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The Plan

Al/ML for Weather
Forecasting

A Systems Approach
— Blending NWP with
Al/ML for Renewable
Energy

Al/ML for

> Severe weather
forecasting

> Model
Parameterization

» Dynamics
» Downscaling
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Going?



My First Al Presentation



Evolution of my Work

GA-Variational Data Assimilation and Source Term Estimation

%
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Lots of great folks helping to advance use of Al / ML In
the Environmental Sciences

Current and Past Chairs of AMS Al Committee
American Meteorological Society



Focus on AMS
Community



Al/ML in Weather Forecasting




Two distinct approaches to weather forecasting

Equation based — numerical in
processing
Empirically based —Dbegin with data and find patterns -

Artificial Itelligence

Blend approaches for optimal prediction



Approaches to leveraging Al for Weather Forecasting

ML Dynamic Core

ML
Parameterizations

Postprocessing



NCAR's First Big Al Success: DICast®
Dynamic

Integrated

foreCast

System

®
DICast® In a Nutshell  Enables Decision Support

* Machine-Learning Post-processer of model data  , jses Real-Time Data — loT

= Create predictive relationships between model output,
observations and desired forecast variables

e Optimal Forecast Combiner
= Create best combination of inputs

e Uses Large amounts of

Model Data
v’ Real time
v’ Historical for training



History of DICast®

Originally developed for The Weather Channel (now The Weather
Company - part of IBM) to produce public-oriented forecasts

Development started in 1999 in Research Applications Program
Used in many other projects as the ‘weather engine’

= Transportation (MDSS, Pikalert®, DIA, MSP)

= Solar Energy (DOE, Kuwait)

= Wind Energy (Xcel Energy, Kuwalit)

= Agriculture (NASA)

= Commercial forecasting companies
 DTN/Schneider/Telvent/Meteorlogix/Kavouras
e Panasonic Weather Systems
» Global Weather Corp
« Skymet Weather Services of India
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Measurements

~

DICast® Application

Dynamic Integrated foreCast System

J

Jim Cowie
Seth Linden
Bill Petzke
Ishita
Srivastava




DICast® Advances

Improve prediction of
Probability of
Precipitation with
Machine Learning

GFS 12z 24-hr POP

Bias-corrected GFS
Gradient boosting

Brier Score

GFS 00Z — 1-hr POP
Clusters of climatologically

similar METAR sites.

Bias-corrected GFS 8 clusters based on GFS

Gradient boosting
o 1 2 3 4 5 6 7 8 9

(O]
Lead time (day) S
N
)
5 Bill Petzke
Jim Cowie

Ishita Srivastava
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Integrating Al with NWP for Renewable Energy




NCAR Variable Energy Forecasting System

Mahoney, W.P., K.
Parks, G. Wiener, Y. Liu,
B. Myers, J. Sun, L.
Delle Monache, D.
Johnson, T. Hopson, and
S.E. Haupt, 2012: A
Wind Power Forecasting
System to Optimize Grid
Integration, special issue
of IEEE Transactions on
Sustainable Energy on
Applications of Wind
Energy to Power
Systems, 3 (4), 670-682.

Center Data

NAM, GFS, HRR,
RAP, ECMWF, GEM

WRF RTFDDA
System

Ensemble
System

Supplemental
Wind Farm Data

Met towers
wind profiler
Surface Stations
Windcube Lidar

Wind Farm Data

Nacelle wind speed
Generator power
Node power
Met tower
Availability

(nowcasting)

m

5>  Operator GUI

{1 ]

Meteorologist
GUI

WRF Model Output




Real Cost Savings by Using Al

Wind Power Forecasts Resulted in Savings
for Ratepayers

Forecasted MAE Percentage Savings
2009 2014~ Improvement
16.83%  10.10% 40% ($60,000,000

Also: saved > 267,343 tons CO2 (2014)
Real Emissions Savings by Using Al/ML

Drake Bartlett, Xcel



Application of Forecasting: Solar Power

Haupt, S.E et al.,

Su n 4caSt® 2018: Building the

Sun4Cast System:
Improvements in
Solar Power

. Day Ahead Forecasting, Bulleti

of the American
Meteorological

‘ U Society, Jan. 2018,

121-135. doi:
- Hours Ahead 10.1175/BAMS-D-

16-0221.1
= gr

oudy day

For Solar Po
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Al as Part of Systems Engineering
Engineering the Sun4Cast® System

Day-Ahead
System

Nowcast
System

Haupt, S.E. and B.
Kosovic, 2017: Variable
Generation Power
Forecasting as a Big
Data Problem, IEEE
Transactions on
Sustainable Energy, 8
(2), pp. 725-732.

DOI: 10.1109/TSTE.201
6.2604679.




StatCast : Regime Dependent Forecasting

Improvement over
Clearness Index Persistence

ANN RD-ANN

13.7% 18.6%

McCandless, T.C., S.E.
Haupt, and G.S. Young,
2016: A Regime-
Dependent Artificial
Neural Network
Technique for Short-
Range Solar Irradiance
Forecasting, Applied
Energy, 89, 351-359.

Tyler McCandless



BIAS (W/m2)

Uncertainty Quantification
Analog Ensemble (AnEn) Approach

Station SMUD 67, forecast initialized at 12 UTC, 15 July 2014

WRF-Solar . 95%
S AnEn 25-75%
~ AnEn+ BC win An-En Mean

Alessandrini, S., L.
Delle Monache, S.
Sperati, and G.
Cervone, 2015: An
analog ensemble
Q

© - for short-term

! probabilistic solar

S power forecast.
o RERRRRRRNARARSARRRARNARRRRARRRRRRARRARRRRRRRREE Appl. Energy, 157,
1 5 9 14 19 24 29 34 39 44 95-110,
Lead Time (hours) doi:10.1016/|.apene

rqy.2015.08.011.

Stefano Allessandrini
Luca Delle Monache



Kuwalit Renewable Energy Prediction
System (KREPS)

Global Models Probabilistic Sta_\t_istic?al
GFS, GEM (current) Wind Power Verlflclzatlon
ECMWEF (future)

Meteorologist GUI MAD-WRF & FDDA
WRF Model Output _ (nowcasting)
Observations Schaake Operator GUI
Wind turbines, Shuffle
Meteosat, Wx stns Dynamic, - '] Combine
Integrated Wind &
Forecast (DICast®) Solar
System Power

Regional Model
WRF-Solar-Wind

Observations

Pyranometers, Probabilistic >
Meteosat, Wx stns Solar Power

Statistical

Physical Model Verification

Al Model

Haupt, S.E., T. McCandless, S. Dettling, S. Alessandrini, G. Wiener, J. Lee, S. Linden, W. Petzke, T. Brummet,
N. Nguyen, B. Kosovic, T. Hussain, and M. Al-Rasheedi, 2020: Combining Artificial Intelligence with Physics-
Based Methods for Probabilistic Renewable Energy Forecasting, Energies, 13, 1979; doi:10.3390/en13081979.

=




StatCast-Wind

e StatCast Wind: Improvements over persistence for wind speed and
power after 15-min (similar for all turbines), using either random
forests (RF) or ANNs

Haupt, S.E., T. McCandless, S. Dettling, S. Alessandrini, G. Wiener, J. Lee, S. Linden, W. Petzke, T. Brummet, N.
Nguyen, B. Kosovic, T. Hussain, and M. Al-Rasheedi, 2020: Combining Artificial Intelligence with Physics-Based
Methods for Probabilistic Renewable Energy Forecasting, Energies, 13, 1979; doi:10.3390/en13081979.

Tyler McCandless
Ishita Srivastava



StatCast-Solar

Initial Results
e Training data from 1 Sep 2018-30 June 2019

e Cubist — Model Regression Tree
e StatCast-Solar can add value to DICast for at least 6 hours

Comparison of the Cubist mode| to the DICast forecasts of

Kt and smart persistence. The Cubist-based method i B}
performs best fonpall fime periods from 15 min to 360 min Percehtage |mprovement of StatCast-Solar over DICast for all
compared to either DICast or smart persistence. lead times from 15 min to 360 min.

Sue Dettling

McCandless, T., S. Dettling, and S.E. Haupt, 2020: Comparison of Implicit vs Explicit Regime Identification in Machine  Tyler McCandless
Learning Methods for Solar Irradiance Prediction, Energies, 13 (682), 14 pp. doi:10.3390/en13030689. Tom Brummet



DICast® Preliminary Verification

wind Solar

Average RMSE of hub ht wind speed Average RMSE of global horizontal irradiance

1 Dec 2018—30 Nov 2019 1 Dec 2018-30 Nov 2019: valid 06 UTC

Seth Linden
Tom Brummet



Stefano Alessandrini

Tyler McCandless Analog Ensemble (An En)

— AnEDICast, RMSEMNP (%218 - — ANEmDICast, RMSENP (%)= 26.1
— DIGast, RMSENP (%)= 237 — DIGast, FMSEMP (%)= 27 5

— AnEn+DICast, RMSE/NP (%)= 5.75
—— DICast, RMSE/NP (%0)=6.12
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—— AnEn+DICast, RMSE/NP (%)= 233
—— DICast, RMSE/NP (%0~ 24.6

Summer Fall

— AnEnDICast, RMSENP (%)-227 . — ANEmDICast, RMSENP (%)= 221
— DiCast, RMSEMNP (%)= 23.4 — DICast, RMSENP (%)= 233

RMSE/NP
00 02 04

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68

AnEn + DICast (black) and DICast (red) for solar power (a)
and wind power (b). The vertical bars represent the 5%-95%
bootstrap intervals that are plotted every other lead time to 31
reduce clutter. RMSE values are normalized by the nominal
power of a single turbine (2 MW) or of a single PV plant (5
MW) and they are obtained by pooling data from all wind
turbines or solar plants together.

Alessandrini, S. and T. McCandless, 2020: The Schaake Shuffle Technique to Combine Solar and Wind Power
Probabilistic Forecasting, Energies, 13, 2503; doi:10.3390/en13102503
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Display Probabilistic Power Output

Outputs from DICast+AnEn as displayed by the web display

Alessandrini, S. and T. McCandless, 2020: The Schaake Shuffle Technique to Combine Solar and Wind Power B!” Petzke
Probabilistic Forecasting, Energies, 13, 2503; doi:10.3390/en13102503 Nhi Nguyen
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Al/ML for Severe Weather Forecasting




Fuel Moisture Content Prediction System

+ Goal:

WRF-Hydro Model

Accumulated Evapotranspiration,
Land Use Category, Soil
Moisture, Temperature

MODIS Satellite Data

Reflectance Bands 1-7

Surface

Characteristics
Elevation, East/West Slope,
North/South Slope, Regions

Fuel Moisture

Content
Live and Dead FMC
(Target Predictand)




Fuel Moisture Content Prediction System
Final Models

+ Final Gridded Product Provides More Realistic Representation of Fuel Moisture
Content Across CONUS

DFMC Observation Sites LFMC Observation Sites
Dead Fuel Moisture Content Live Fuel Moisture Content
Gridded DFMC Predictions Gridded LFMC Predictions

Tyler McCandless
Branko Kosovic
Bill Petzke




Fuel Moisture Content Prediction System

WRF-Fire Evaluation

Cold Springs fire simulated using constant Dead Fuel Moisture Content of

8% and machine learning predicted DFMC Distribution of the
estimated DFMC

Our NWP -based wildland fire prediction model tends to overestimate the
rate of spread of fire due to lack of including fire suppression

Thus, it is positive to see burn area increase

Constant DFMC ML-based DFMC - RF

Tyler McCandless
Branko Kosovic
Bill Petzke



Interpretable Deep Learning for Severe
Weather Research and Forecasting

Convolutional Neural Networks

Feature Visualization by Optimization

Patch fixed weights Label
Forward pass to infer
probability

Backpropagate error to

update input image

Gagne ll, D.J., S.E. Haupt, D.W. Nychka, and G. Thompson, 2019: Interpretable Deep Learning for Spatial Severe Hail 31
Forecasting, Monthly Weather Review, 147, 2827-2845. DOI: 10.1175/MWR-D-18-0316.1



Optimized Conv Net Hailstorm

Reconstruct storms with
vertical structures that
make sense dynamically
and physically.

Feeder-Seeder Mechanism
(Heymsfield 1980)

Gagne Il, D.J., S.E. Haupt, D.W. Nychka, G. Thompson, 2019: Interpretable Deep Learning for Spatial Severe
Hail Forecasting, Monthly Weather Review, 147, 2827-2845. DOI: 10.1175/MWR-D-18-0316.1.



Impact of Using Convolutional
Neural Networks

Convolutional neural
networks produce
more skilled hall
predictions than other
models.

Convolutional neural
networks encode
realistic storm
features and hall
growth processes.

Internal representations of
deep learning models could
enable more sophisticated
analysis of large weather and
climate data.



Applying Deep Learning to Atmospheric Rivers

Main Results:

- The GFS forecast field of integrated
vapor transport is used for a
convolutional neural network-based
forecast post-processing method.

« The machine learning algorithm reduces
the full-field RMSE and improves the
correlation with ground truth.

« An error deconstruction shows that the
dominant improvements come from the
reduction of random error and o o N

Storm shapes determined the network’s adjustments. Simitar storm

conditional biases . (i.e. zonal, meridional, stunted etc.) types were corrected in very

similar ways.


https://doi.org/10.1029/2019GL083662
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Al/ML for Model Parameterization




Machine Learning for
Surface Layer Parameterization

Surface layer parameterizations model energy transfer
(flux) from atmosphere to land surface

Monin-Obukhov similarity theory determines surface
fluxes and stresses in atmospheric models.

Stability functions ®,, (momentum) and ¢4 (heat) are
determined empirically from field experiments.

However, the stability functions show a large amount
of variation.

Instead, we will use machine learning flux estimates.  https://nevada.usgs.gov/etimeasured.htm
We have therefore selected two data sets that provide multiyear
records:

« KNMI-mast at Cabauw (Netherlands), 213 m tower, 2003 -

2017

 FDR tower near Scoville, Idaho, 2015 — 2017
Fit random forest to each site to predict friction velocity, sensible
heat flux, and latent heat flux



Cross -Testing ML Models

2

\Wira

v' Random Forest and Neural Network
: both significantly outperform Monin-
Obukov Theory
v True even when applied to site that is
different than the one trained

UV J. J J.C J. J.U J.USU
RF Trained on Idaho |  0.90 0.77 049 | 0.074 0.049

J.U
0112 |




Machine -Learning Surface Layer Parameterization for Offshore

Tested Random Forests and Artificial Neural Networks

Can we use ML to
parameterize the marine
surface layer?

Used weather data and flux
measurements from the FINO1

tower and buoys to train machine
learning models to estimate Both ML methods
friction velocity u, and outperformed
temperature scale 6, directly traditional Monin-
Obukov Similarity
Theory!
Sue Dettling

Tom Brummet
David John Gagne
Branko Kosovic
Sue Haupt



Application of ML Surface Layerin Large Eddy
Simulation Models

Tested in NCAR’s GPU-enabled FastEddy®
Large Eddy Simulation Model

Testing in community Weather Research and
Forecasting Model

Much faster — speed real-time modeling

Can train for specific surface conditions

U-wind speed from Neural Network Surface Scheme
implemented in FastEddy for Diurnal Cycle.


https://doi.org/10.1029/2021JD036214
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Al/ML for Dynamics




It is possible to make global weather
forecasts with a toy NN model that are
better than persistence and competitive
with T21 Atmospheric models of similar
complexity for short lead times

(@) (b
1200 . . 1200 . . . .
Local NN —— Local NN ——
I Global NN —— Global NN ——
1000 Persistence 1000 Local NN; 2 fields |
= T21 forecast —— = Global NN; 2 fields ——
5 800 oper. forecast —— ] g osoor 7
7 | . =
§ 600 g 600 - g
=] =]
= a0 ] a0t 1
i =
200 200 F il
" 2 4 e 8 10 120 °¢ 20 a0 0 s 100 120
Time in hours Time in hours

Figure 3. (a) Globally integrated absolute forecast error for the best local network (9 x 9 stencil), the glohal network, a persistence forecast,
an IFS forecast at TL21 resolution and the operational weather forecast of ECMWE. The persistence forecast shows a 12-hounrly fluctnation
since Z500 has a weak 12-hourly cycle in the tropics due to atmospheric tides. (b) The same globally integrated absolute forecast error for
the best local and global network as in (a) plus the best results for local and global networks that use 2mT as additional prognostic field.



Using a Genetic Algorithm to capture
behavior of a Lorenz System

A Quadratic Empirical Model Solution with a Genetic Algorithm

40-
? 204
20 i ,f"‘
0 s
MO N ‘ '\‘
208 zo
<R i ,/- ‘m‘i\l
o B
D ¢ S 50
Y 20 0 X v 5 0 X
Figure 8. A Lorenz attractor computed by integrating equations (15) in time
2000 steps. Figure 9. Nonlinear model of Lorenz attractor (equation (12)) as computed with a
GA.
40, Solution with a Linear Inverse Model
20 e
! ‘,"ﬁ" o,
TR
04 Qi
e SO R Haupt, S.E., 2006: A quadratic empirical model formulation for dynamical
N '}'f systems using a Genetic Algorithm,, Computers and Mathematics with
4. ' Applications, 51, 431-440.

o
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 Built deep-learning-based convolutional
neural network ensemble system for S2S
forecasting.

* Requires 3 min to produce a 320-member
6-wk ensemble forecast

e Similar scores ( CRPS and RPSS) for 4-wk
fx/ and 5-6-wk fx/ as ECMWF S2S
ensembles.
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Al/ML for Downscaling




High-Resolution Modeling with 3D PBL Scheme







Downscale Model Architecture

* Train two GANS independently ( 4x and 8x downscale networks )
- use 960m coarsened LES to train 4x model
- use 240m coarsened LES to train 8x model

* Apply sequentially

| SR BN 3 X Model [N

960m 240m 30m

Generative Adversarial Network <=



960m Coarsened WRF 30m Super Resolution U




Coarsened WRF ESRGAN Original WRF




Full Domain Generated U VS WRF 30m U



Spectra Plots Testing Region

TKE AS A FUNCTION OF WAVENUMBER

8X model trained independent of 4X model 8X model trained on output of 4X model
Smoothed Output = 3x3 convolutional filter applied to LES and applied to GAN output , low pass filter



Demonstrate Transfer Learning

Test model on unique domain

L

s | $e°

ﬁ«@“if@@ 1o
\}%g@g\@@




Transfer Learning Examples
U Wind

Coarsened 960m U Smoothed 30 m ESRGAN U Smoothed 30 m LES U



Spectra Plots Transfer Region

TKE AS A FUNCTION OF WAVENUMBER

8X model trained independent of 4X model 8X model trained on output of 4X model

Smoothed Output = 3x3 convolutional filter applied to LES and applied to GAN output , low pass filter
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Where are We Going?




What I1s needed to move
Forward?

1) Trustworthiness
2) Interpretability
3) Data Usability

4) Technique



What will Constitute Success?

When major centers include Al post-

processing as a step in how they make
their forecasts.

 When systems are changes, consider the
post-processed result rather than the output
of the NWP model alone.

 Prioritize computation space and time for the
Al method

» Potential regime dependent corrections

 Downscaling using Al to save computational
power



Actionable Items

Roadmap formation via:

1) Development of a data repository for
fast development of post -processing

techniques o Ei able Ac essible ﬂtﬂrﬂﬂ'crubln RewdeP
2) Data standardization methods (FAIR) Y
3) Calls for studies on interpretability O Qﬂ MK
methods P 4 ay

4) Metadata and model documentation for
labelled training data

5) Database of recorded Al failures to limit
duplication of effort across the research
community



Post -processing Discussion Group from the 2019 Oxford on
Machine Learning in Weather and Climate Modeling

Datasets and test python code for processing available at:
https://qithub.com/NCAR/PostProcessForecasts

Example Problems:
- MJO Ensemble Forecasts
- PNA Ensemble Forecasts
- GFS Integrated VVapor Transport
- ECMWEF 2-m Temperature Ensemble
over Germany
- UK Surface Road Conditions



Summary:
- Machine Learning is becoming a necessary
component of modern weather forecasting

systems

- Levels of applications

—~ Dynamic core
—- Model parameterizations
- Post-processing: Model improvements based

on observations
Al-Physics Blended System

 Planned outcome: to advance
applications of weather forecasting
through a systems approach, NWP,
observations, and machine learning
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