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IS the Unified Forecast System
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https://ufscommunity.org/

Roadmap Fig. 1
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_ “System” in UFS =
AbO code + governance + community

tem (UFS) is a comprehensive, community-
eling system, designed as both a research tool and as
AA’s operational forecasts.

Planning and evidence-based decision-making support improving research
and operations transitions and community engagement.

UFS is configurable into multiple applications that span local to global
domains and predictive time scales from less than an hour to more than a year.

UFS is a unified system because the applications within it share science
components and software infrastructure.

— UFS is a paradigm shift that will enable NOAA to simplify the NCEP
Impact Production Suite, to accelerate use of leading research, and to produce more
accurate forecasts for the U.S. and its partners.
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JEDI driver
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Presenter Notes
Presentation Notes
UFS includes a set of model components, which each have interfaces to one or more infrastructures (ESMF/NUOPC, CCPP, JEDI). 
Click to see connections – The model components are connected by those infrastructures in multiple ways to form UFS applications.
Click to see contributors – Most of the infrastructures and components are themselves community codes developed by federal, academic, and industry partners – this is a partial listing, but you get the idea! 
 


mentations

FV3 based, coupled waves, aerosols
® Medium-range Weather (MRW) App 1.1.0, October 2020
» Updates from graduate student test responses, build systems, documentation, chgres
GFSv16, operational implementation March 2021
» Updated atmospheric physics, wave coupling
Short-range Weather (SRW) App 1.0, March 2021
» FV3 Limited Area Model before estimated 2024 implementation
® Short-range Weather (SRW) App 2.0, June 2022
Many components, e.g., MET, CCPP, as well as first JEDI-FV3 release in Nov. 2020.
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WATCH lIl in the UFS
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he UFS coupled model that connects the
ospheric physics (CCPP), a mediator (CMEPS),
VIC waves (WW3), ice (CICE®G)

rves the following applications -- Medium range weather, S2S, Short
range weather, Hurricane, Air Quality

® Can run multiple configurations -- Atmospheric only mode, fully coupled,
ocean only mode, regional, hurricane mode (currently in development)

Serves NWS operations
» Transitioned to operations for GFS v15, GFS v16, GEFS v12

» Development model for GFS v17, HAFS v1, RRFS v1 and seasonal
SFS v1

é@‘ @ 4Q Cambridge, Isaac Newton Institute, October 24, 2022
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coupling
WAVEWATCH Il coupling in UFS framework

ing COASTAL Act funding and
Ing toward total coastal water capability
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WATCH Il
Multidisciplinary) Basics
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This is not a (chaotic) initial value problem

t) + Sys(k,0;x,t) + S,y (k,0;x,8) + ...

=== Input of energy due to wind S;,, and dissipation due
lon variance spectrum  to breaking S,;; only make waves higher or lower.
(k,8) as a function of wave- Fourth order nonlinear interactions are the lowest
number k and wave direction 6 order process to effective make waves longer.
apted from Bell Labs work Described with Boltzmann integral (Qquantum mech.)
r signals, Rice (1944)

- Linear wave propagation along great In shallow water wave bottom
o circles in deep water, numerics interactions follow Snel’s law,
borrowed from dispersion modeling  techniques borrowed from optics

&) W 48 Cambridge, Isaac Newton Institute, October 24, 2022 12



WATCH I
munity Approach
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Mﬂg community

om the mid 1950s
eneration models, assumed spectral shape

- » Divergence of approaches, many models

® Joint North Sea Waves Project (JONSWAP, 1973) established
role of nonlinear interactions in evolving spectral shape

® SWAMP group book “Ocean Wave Modeling” (1985) established
the need for explicitly modeling nonlinear interactions (no more
assuming spectral shape)

® \WAM: SCOR working group 83: community developing first Third-
Generation (3G) wind wave model for operational use

» WAMDIG 1988, JPO, 18, 1,775-1,810
@ @ 4((,} Cambridge, Isaac Newton Institute, October 24, 2022
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re up to v2.22
tom open-source license
. e 2008-2013 NOPP project

» Developing Community Modeling approach National
Oceanographic
» Modern code management (SVN repository) Partnership
Program

| » Tolman et al., 2013, Ocean Modelling, 70, 2-10
- » Proven acceleration of research to operations process
o2 ¢ Early data point for buying in to UFS approach

a8 ® As part of move to UFS, WW3 code moved to GitHub (2018)
® \\Norld-wide distribution, “school sessions”

@) Wy 40 Cambridge, Isaac Newton Institute, October 24, 2022 15
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WATCH Il

Ificial Intelligence / Machine Learning examples
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AL 1= Physics emulation

xplicitly in 3G models

ct solution is 6 dimensional Boltzmann integral

» Web — Resio — Tracy (WRT) technique

» Much too expensive for operations

® Discrete Interaction Approximation (DIA)

> Hasselmann et al. 1985, J. Phys. Ocean., 15, 1,369-1,377
» Makes 3G models feasible, but also introduces model errors

® One possible alternative is a Neural Network Emulator for WRT
é?:‘ @ %}2 Cambridge, Isaac Newton Institute, October 24, 2022
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Mlator

T

ondimensional decomposition for
Spectrum and Source

» NN maps decomposition X to
decomposition Y

: Works well for individual mapping
~ » Not stable in model integration
-~ ® Addinverse NN (iNN)
» Allows for QC to choose NN or WRT

PR
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It works, QC stabilizes model
First attempt still expensive
» lterative training ?

» Nonlinear conservative filter

Approach abandoned
» Lack of dominant scales
» Too many small scales

Tolman and Krasnopolsky 2004, JCOMM Tech. Rep. 29, Paper E1
Tolman et al. 2005, Ocean Modelling, 8, 253-278
Krasnopolsky et al., 2008, Neural Networks, 21, 535-543

Cambridge, Isaac Newton Institute, October 24, 2022 21



AN 2" Parameter optimization

MD)

set of interaction configurations (was 6D)

*’_“fitting T source term only does not provide accurate model
et of idealized test conditions

- ® Fit GMD model integration results to WRT results
® Compute error metrics from saved spectra.

k » Mean parameters (7) 1D spectrum (5) 2D spectrum (3)

~ Genetic Optimization

pur Directed Random Search

® Describe free parameters as “genome”

® Evolve a population — fit pairs + recombination and mutation
&) & 40 Cambridge, Isaac Newton Institute, October 24, 2022 22




10 — 100
Cd generation 10 9
10° 80
Difficult to visualize for more ) . 70
free parameters o o0
. °° ofpet o 50
® \Worked effectively and ol |1
iciently for up to 20 free %
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Tolman 2010, MMAB report 288, 175 pp. 0 0 02 03 “ g
Tolman 2013, Ocean Modelling, 70, 11-23
Tolman and Grumbine 2013, Ocean Modelling, 70, 25-37
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-Incl‘l]ding spectral errors

hurricane Lake Michigan

Configur- | T,(-) Error T.(-) Error _ N T/
ation % % pOptmul

WW3 1.20 27.5 1.16 23.5
WAM 0.99 287 1.09 24.9
G11d 1.05 26.3 1.10 21.8
G13d 1.50 19.1 1.45 16.8
G35d 3.52 14.9 4.04 14.4
WRT 1360 --- 370 ---




M processing

municate both the accurcy and the

B0 Sp ecifically important for systems with chaotic behavior

® Model uncertainty is traditionally addressed with model
ensembles

» Perturbing initialization, forcing, parameterizations etc. to
obtain multiple likely solutions

- » Ensemble average generally is more accurate than
— deterministic model run particularly for longer forecast times

» Al can do even better

@ @ 4Q Cambridge, Isaac Newton Institute, October 24, 2022
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Martins Campos et al. 2019, J. Atmospheric & Oceanic Techn.
36(1), 113-127 (source of figures)
Martins Campos et al. 2020, Ocean Modelling, 149, 101617
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WATCH Il

te Sector Engagement
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umber of private sector partners
‘and who are adopting the UFS
here is jUSt on one group, Sofar Ocean

® Pre UFS active in wave modeling
® Focus on observations and modeling

IS just an example ! Sofar Ocean
SanF i CA USA
.. and a testbed for the UFS o rrancieo,
e With thanks to Christie Hegermiller, Isabel Houghton, Pieter

past interactions

Smit and Tim Janssen for the following slides and many
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http://www.sofarocean.com/

Cla
== SOFAR

Global Wave Observations

Spotter is a metocean buoy powered by the sun and connected through
satellite. Every Spotter measures and calculates:

Sea surface temperature
Barometric pressure

Wind speed and direction by proxy
Acoustic intensity

Surface wave spectral properties

Houghton et al. (2021) JTECH 10.1175/JTECH-D-20-0187.1
N

of USNRLiand UW Courtesy of USCG Polar Star


Presenter Notes
Presentation Notes
Raghukumar et al. 2019, J. Atm. and Ocean. Tech, 36 (6): 1127–1141.
Voermans et al. 2020 J. Geoph. Res.: Oceans doi.org/10.1029/2019JC015717
Houghton et al. 2021 JTECH 10.1175/JTECH-D-20-0187.1


2 SOFAR ASTRONJOMER

Operational Wave Forecast System

aws

Cloud-based, scalable compute infrastructure.

d' docker

SECMWF 4@ i
> Observations

Forcing % %

Initial cgnditiqns Assgivziijztion Analysis
P N
Every hour Eve hours

10-day wave forecast

T ke ML

:( be MR

o [ e, ME _
Houghton, et al. (2022). Operational assimilation of spectral wave data from the Sofar Spotter network. Geophysical Research Letters, 49 2 f ﬁq
Smit, P. B., et al. (2020). Assimilation of distributed ocean wave sensors. Ocean Modelling, 159 "':ﬁ;i 42,
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& SOFAR

Assimilation of wave spectra observations in WW3

Modeled Hs [m] Modeled T, [s] Modeled D [ ]
1.0 sseeo oo o o 1.0 o eesoemmp e t— | ] () | eessotmmtm——s - .
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. s . E o 08 |
e [arge scale distributed sensing networks (e.g. 5 ord | £ 0.96
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Spotters) substantially improve wave forecasts well A 07 tol
O  Large improvements in the short term (~ 24 hours) == Spectral DA 003 ]
O  Long-term relaxation towards forcing 0 20 40 60 8 100 0 20 40 60 8 100 0 20 40 60 s 100
. Lead time [hr] Lead time [hr] Lead time [hr]
O  Swell updates persist
, . . 20 + Spotter
e  Spectral observations are vital to reach additional Observation
impact on forecasts 157 — :0 g:

characteristics (spectral shape) are persistent on Spectral DA

z

¢ Improvement to frequency and direction Ng 10 4
€

medium timescales W
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fHz]

Upper: Assimilation of spectral information improves Hs, Tp, and Dm over assimilation of Hs alone.
Lower: Spectral information modifies the model spectrum to best align with observations.

Houghton, et al. (2022). Operational assimilation of spectral wave data from the Sofar Spotter network. Geophysical Research Letters, 49 3 1
Smit, P. B., et al. (2020). Assimilation of distributed ocean wave sensors. Ocean Modelling, 159
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& SOFAR

Global forecasting with assimilation of wave spectra observations in WW3

Difference in 48-hour forecast with data assimilation vs. without

ik

AHsﬁg [m]

Houghton, et al. (2022). Operational assimilation of spectral wave data from the Sofar Spotter network. Geophysical Research Letters, 49
Smit, P. B., et al. (2020). Assimilation of distributed ocean wave sensors. Ocean Modelling, 159
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A
== SOFAR
Coupled Forecasting and Data Assimilation

Developing a custom system using UFS components
to leverage Spotter observations at the air-sea interface:

ESMF/NUOPC

- _FV&: <> Noah
SHﬁLD

7 N\

Surface Winds —

Heat

|

SST

!

Warm Surface Water

Ensemble-based
coupled DA
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Md more ...

deling, including private sector
ciplinary approach

ntial of Artificial Intelligence, from examples and more
Model emulators

Model optimizations (selection of tunable parameters)
Postprocessing of model results (ensembles)
Improving Data Assimilation

Machine Learning from observations and model output
Replacing models / ensemble members ?

Y YiNEY YOvi

PR
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https://www.ted.com/talks/hendrik_tolman_weather_forecast_innovation
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