Stretched Grids for Simulations of Atmospheric Chemistry with GEOS-Chem High Performance

Liam Bindle

Coauthors: Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob

About GEOS-Chem

Some background on GEOS-Chem

- First described in Bey et al., 2001
- Community model
 - New release every 3 months Ο
 - 35 members on the Steering Committee Ο
- 5 full-time support staff (Harvard + WashU)
- Multiple interfaces
 - **GC-Classic** 0
 - GEOS-Chem High Performance (GCHP) 0
 - **GEOS-Chem in GEOS-5** 0
 - **CESM-GC** Ο
 - WRF-GC Ο

9th International GEOS-Chem Meeting (IGC9) - Harvard University, 2019 https://geos-chem.seas.harvard.edu/geos-meetings-2019-igc9

GEOS-Chem users around the world Credit: https://geoschem.github.io/geos-chem-people-projects-map/

About GEOS-Chem

GEOS-Chem High Performance (GCHP)

- Offline CTM (Eastham et al., 2018, GMD)
- Capable of multi-node simulation
- Uses FV3 (similar to UFS)
- Horizontal: cubed-sphere grid
- Vertical: surface to 1 Pa
- Capable of simulations on thousands of cores

Fine resolution output from GCHP. Credit: <u>https://gchp.readthedocs.io/en/latest/supplement/plotting-output.html</u>

Washington University in St. Louis

GCHP needs a refinement capability

The lack of a grid refinement capability is limiting

- Global fine resolution is expensive
- C180 (~50 km)
 - 194,400 cells per level, 72 levels
 - 1-year simulation takes ~8 days with 900 cores

- 2x resolution => 4x problem size
- Studies often focus on a specific geographic region

Lots of grid cells are needed for ~50 km resolution.

GCHP needs a refinement capability

There are several refinement techniques to choose from

GCHP needs a refinement capability

Why grid-stretching is well suited for GCHP

- Easy to use
 - Runtime parameters
 - No boundary conditions
- Single refinement limitation counterbalanced by global fine res. capability
- Relatively easy to implement
 - \circ Long et al. (2015) Grid independent capability of GEOS-Chem
 - Harris et al. (2016) Stretched grid capability for FV3
 - Weng et al., (2020) and GEOS-Chem 12.5.0 Grid independent emissions

Stretched-grid parameters and notation

Runtime parameters

- S stretch factor
- T target point
- Cubed-sphere size (e.g., C120)

Our notation

- Standard cubed-sphere: e.g. C180-global
- Stretched cubed-sphere: C180e-US

Validating stretched-grid simulations in GCHP

(there's something interesting here)

How do we check if it works?

- Look through the code
- Check that the simulation runs
- **Compare output from stretched-grid and cubed-sphere simulations (via regridding)

9

Aliasing effects from upscaling emissions...

C96-global

What kind of differences should we expect?

Precision (and Accuracy)

We need a way to gauge expected differences

- If we were to shift the C96-global grid and rerun the simulation, what differences would we see?
- Alternatively, we could compare C96-global to a C94-global simulation

Similar regular grids overlap poorly

Grid-box overlap is minimal, but grid resolution is similar

Recap of the method

Precision (and Accuracy)

Validation experiment

3 simulation comparison

- C96-global
- C96e-NA
- C94-global

LHS: C96e-NA vs. C96-global

RHS: C94-global vs. C96-global

Conclusion

The differences in the stretched-grid simulation are consistent with what we should expect.

Stretched-Grid Simulation Demos

Demonstrations

Two avenues to explore: efficiency and resolution

- 1. For efficiency (two simulations, same resolution)
- 2. For resolution (two simulations, same grid size)

For both, we will consider **regional comparisons** of simulated **tropospheric NO2 columns** with observations from TROPOMI.

Demonstration #1: Stretching, for the sake of efficiency

Comparing sim. and obs. NO₂ columns in CONUS (Set Up)

Two simulation comparison

- 1. C180-global (48 km in US)
- 2. C180e-US (57 km in US; C60, S=3.0)

Similar resolutions in US, but stretched-grid simulation has 9x fewer grid-boxes.

Questions

Does C180e-US produce similar results?

How does their computational compare?

Demonstration #1: Stretching, for the sake of efficiency

Comparing sim. and obs. NO₂ columns in CONUS

 NO_2 column density (10¹⁵ molec cm⁻²)

Demonstration #2: Stretching, for the sake of resolution

Comparing sim. and obs. NO₂ columns in California (Set Up)

Two simulation comparison

- 1. C90-global
- 2. C900e-CA (11 km in CA; C90, S=10.0)

Same grid size (C90) but stretched-grid simulation uses S=10.

Demonstration #2: Stretching, for the sake of resolution

Comparing sim. and obs. NO_2 columns in California

Considerations for Stretched-Grid Simulations

How can one choose appropriate stretching parameters?

- As stretch factor increases
 - a. refined domain gets smaller
 - b. grid-boxes opposite target face expand
- Implications are application specific how can one determine an appropriate stretch factor?

Atmospheric Composition Analysis Group

Understanding how stretching changes with distance

Napkin calculation for choosing an appropriate stretch-factor

Constraint #1: Pick a width for the target face.

$$S \leq 0.414 ~ \cot(w_{
m tf}/4 ~ r_{
m E})$$

Constraint #2: Pick a max & min resolution.

$$S \leq \sqrt{R_{
m max}/R_{
m min}}$$

Example

- 1. CONUS is ~4200 km across. $w_{\rm tf}$ = 4200 km => S ≤ 2.5
- 2. R_{min} =C360e (~25 km), R_{max} =C48e (~200km) => S ≤ 2.7

Some final thoughts

- Interactive tool for playing with stretching parameters: <u>https://gchp.readthedocs.io/en/latest/stretched-grid.html</u>
- Don't disregard moderate stretch factors
- Keep the backside in mind; too coarse => STE issues (wind gradients whittled away)

Conclusions

- We added grid stretching to GCHP 13.0
- Stretched-grids are nimble and conceptually simple
- We used an estimate of expected differences from upscaled emissions to validate the capability
- We developed a simple method for estimating an appropriate upper limit for S

Future work that's needed

- Finer resolution meteorology and emissions data
- General purpose regridding method for C-grid vector fields

© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.	Model Development
Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model	
Liam Bindle ¹² , Randall V. Martin ^{12,3} , Matthew J. Cooper Benjamin M. Auer ⁶ , Thomas L. Clune ⁶ , Hongjian Weng ⁷ , A. Keller ^{6,10} , William M. Patman ⁶ , Steven Pawson ⁶ , and D	^{2.1} , Elizabeth W. Lundgren ⁴ , Sebastian D. Eastham ⁵ , Jintai Lin ⁷ , Lee T. Murray ⁸ , Jun Meng ^{2,1,9} , Christoph aniel J. Jacob ⁴
³ Departmere of Physics and Annospheric Science. Dalbouist: ⁴ Harard-Smithonic Centr for Arappingsks, Cambidga, M ⁴ Jaha A. Pauloos School of Engineering and Applied Sciences ³ Uzbentzy for Arabian and the Environment, Massachuster, ⁶ Tokeha Modeling and Assimilation Offices. NASA Gotadan SJ ⁵ Cabentzy for Christian and Ocaram-Amophere Studies. Dep School of Physics, Paking University, Beijing, China ⁹ Papartment of Eastman di Davison-monther Studies. Dep School of Physics, Paking University, Beijing, China ⁹ Manopheris and Ocaemic Sciences, University of California, ¹⁰ Universities Space Research Association, Columbia, MD, U	University, Idulita, NS, Cainala A, USA , Harvard Univensity, Cambridge, MA, USA Institute of Technology, Cambridge, MA, USA pace Flight Center, Greenbelt, MD, USA ententent of Antrospherics and Oceanie Sciences, of Rochester, Rechester, NY, USA Los Angeles, Los Angeles, CA, USA SA
Correspondence: Liam Bindle (liam.bindle@wustl.edu)	
Received: 25 November 2020 – Discussion started: 16 Decemb Revised: 28 June 2021 – Accepted: 26 August 2021 – Publishe	ber 2020 zd: 6 October 2021
Abstruct. Modeling annoopheric chemistry at fine resolu- tion globally is companiatomly expensive: the capability to focus on specific geographic regions using a multitude grid is desirable. Here, we develop, validate, and demon- stane stretched grids in the GEOS-Chem annopheric chem- istry model in its high-performance implementation (OCHP). These multiscule grids are specified at runnities by four par- rameters that offer seven immite control of the region that is refined and the resolution of the region that	simulation with a highly localized refinement with ~10 k resolution for California. We find that the refinement in proves spatial agreement with TRFDON columns compensational agreement with TRFDON columns compensation for 0.0 cabel-sphere simulation of comparable computed instand demands. Overall, we find that stretched grids. CHEDN ACMEM are a practical tool for fine-resolution regionance or continumbi-cale-simulations of the interpret of the stretched grids are available in GEOS-Chem version 13.0.3
date the stretched-grid simulation versus global cubed-sphere simulations. We demonstrate the operation and flexibility of stretched-grid simulations with two case studies that com-	1 Introduction
pare simulated tropospheric NO ₂ column densities from stretched-grid and cubed-ophere simulations to retrieved col- umn densities from the TROPOspheric Monitoring. Instru- ment (TROPOMI). The first case study uses a stretched grid with a broad refinement covering the contiguous US to pro- bane simulane landown that optime instructions of CIP	Global simulations of atmospheric chemistry are comp tationally demanding. Chemical mechanisms in the trops sphere typically involve more than 100 chemical specie emitted by anthropogenic and natural sources, with produ- tion and loss by chemical reactions, and mixing through 3-

Extra slides

Resolution (km)