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Outline

This presentation is a combination of two different approaches:
* Ensemble based

 Model configuration based

1. Methodology:
 Method for Object-Based Diagnostic Evaluation (MODE)
* Validation Statistics

2. Ensemble-based validation

3. Model configuration-based validation
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Method for Object-Based Diagnostic Evaluation (MODE)

1. ldentify objects in forecast and
observation fields.

2. Identify various object
attributes for each object, such
as location and size.

3. Match the forecast and
observation cloud objects.

4. Output attributes for individual
objects, such as location and
size, and matched object pairs,
such as the distance between
object centers, ratio of object
sizes, and overall interest score
describing the “goodness” of
the match for assessment.




Method for Object-Based Diagnostic Evaluation (MODE)
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Clusters: one or more observation
objects matched with one or
more forecast objects

e Must have an interest score >
0.65

e Useful when analyzing matched
object pairs, as otherwise
smaller objects might not have
a match and skew statistics

 Examples:
* @Gray objects over Nevada

 Green objects over Ontario,
Canada



Method for Object-Based Diagnostic Evaluation (MODE)

Interest Scores: similarity between matching forecast and observation MODE objects
User-Defined Weight (%) Description

Object Pair Attribute

centroid_dist
boundary_dist
convex_hull_dist
angle_diff

area_ratio

int_area_ratio

4 (25.0)
3 (18.75)

1(6.25)

1(6.25)

4 (25.0)

3 (18.75)

)

Distance between objects’ “center of mass”

Minimum distance between the objects

Minimum distance between the polygons
surrounding the objects
Orientation angle difference

Ratio of the forecast and observation objects’
areas (or its reciprocal, whichever yields a lower
value)

Ratio of the objects' intersection area to the
lesser of the observation or forecast area
(whichever yields a lower value)



Validation Statistics

Mean Absolute Error (MAE): MAE=%Z=\il|Fi — Oil

Mean Bias Error (MBE): MBE = % Z%\Ll(Fi — 0y)

F and O : forecast and observation BTs



Validation Statistics

Mean Absolute Error (MAE): MAE=%Z=\il|Fi — Oil
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Two different approaches:

1. Over the full domain



Validation Statistics

a) GOES Observation Object Simulated Object
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Mean Absolute Error (MAE): MAE=%Z!\;1|Fi — Oj]

Mean Bias Error (MBE): MBE = % Z%\Ll(Fi — 0;)

F and O : forecast and observation BTs

Object Brightness Temperature (K)

Two different approaches:

Object Difference

1. Over the full domain

2. Over individual object/cluster matches where the
displacement between objects has been removed.
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Model Configurations: WRF

1.SPP-MP ensemble: 5 members

 Time- and spatially-varying SPP perturbations were added to the graupel spectra
Y-intercept parameter.

* Uncertainly is introduced in the cloud water gamma distribution at a scale of +/- 3.

* \Vertical velocity was perturbed, which impacts cloud condensation and ice nucleation.

2.Control ensemble: 5 members

 White noise perturbations are introduced at the initialization time to four ensemble
members.
* Fifth member is the unperturbed control initialization.

For more information, please see:
Thompson, G., J. Berner, M. Frediani, J. A. Otkin, and S. M. Griffin, 2020: A Stochastic Parameter Perturbation
Method to Represent Uncertainty in a Microphysics Scheme. Submitted to Mon. Wea. Rev



Model Configurations: WRF

a)

Comparison between Observed GOES-16 and Simulated 10.3 um BTs from 20170515 12UTC valid on 20170517 at 00UTC
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Comparison between Observed GOES-16 and Simulated 10.3 um BTs from 20180121 00UTC valid on 20180121 at 21UTC
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Brightness Temperature (K)
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Ten 48-h forecasts, with forecast hours 0-5 are not used due to model spin-up.
* forecasts initialized at 12 UTC in May 2017
» forecasts initialized at 00 UTC in January 2018



Validation Statistics

Continuous Ranked Probability Score:
 compares the cumulative distribution function
(CDF) of the simulated ensemble BTs to the

observed BT at a given pixel

* Green indicates the CRPS for ensemble 1 for
cases Where the observation BT is within (b) and
outside (c and d) the ensemble BT CDF

Cumulative Distribution Function
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Validation Statistics

Continuous Ranked Probability Score:

 compares the cumulative distribution function Shsestibn
(CDF) of the simulated ensemble BTs to the
observed BT at a given pixel

w
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—
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* Green indicates the CRPS for ensemble 1 for
cases Where the observation BT is within (b) and
outside (c and d) the ensemble BT CDF.

Cumulative Distribution Function
Cumulative Distribution Function

235 3 240 ) 245 250 255 0235 240 245 250 255
Ensemble Brightness Temperatures [K] Ensemble Brightness Temperatures [K]
Continuous Ranked Probability Skill Score Jomeraon "
(CRPSS): ; ;
CRPSS=1 — CCPI;S SSPP‘MP
Control =] $ s
IS 1 > I 1 5
Positive CRPSS indicates the SPP-MP ensemble BTs %% a0 s 0 2 Ous 2w s 20 5 20
Ensemble Brightness Temperatures [K] Ensemble Brightness Temperatures [K]

more closely represent the observed GOES BT than
the Control ensemble BTs.



Results: CRPSS

Initialization Time

Inttialization Time
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2017050712
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2017052512
2017052712

2018010700
2018010900
2018011100
2018011300
2018011900
2018012100
2018012300
2018012500
2018012700

2018012900
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SPP-MP Continuous Ranked Probability Skill Score compared to Control Ensemble
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* CRPSS is negative for 61% of
forecast hours in May.

* ensemble not enclosing
the observed BTs

e 70.4% of May
forecasts

* 49.8% of January

* CRPSS positive for 75% of
forecast hours in January.

* smaller spread in SPP-MP
ensemble than Control

* 75.6% of May
forecasts

* 32.1% of January




Results: Domain MAE

Mean Absolute Error for May Simulated 10.3 um Brightess Temperature [K]
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Mean Absolute Error for January Simulated 10.3 um Brightess Temperature [K]
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Results: Domain MAE

SPP-MP minus Control [K]

SPP-MP minus Control [K]

vioan Fheolle Eror orfey STRAMF Smulaied 103 um Blioniees Temperaure * Little difference between the MAE in
: ”\\:‘ May.
“f’iﬂ \ » Slightly larger difference in January,
with SPP-MP slightly more accurate.
N * Differences between SPP-MP and

Mean Absolute Error for January SPP-MP Simulated 10.3 um Brightess Temperature [K]

0.2

0.1

Control not statically significant.

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
Forecast Hour

 When analyzing pixels with observation
or ensemble BT < threshold:

e SPP-MP less accurate for colder
thresholds in May
(SPP-MP minus Control > 0)

e SPP-MP more accurate for colder

| | thresholds in Jan
6 8 10 12 14 16 18 20 22 quéorgc?astza ou?o 32 34 36 38 40 42 44 46 48 .
(SPP-MP minus Control < 0)

BT Threshold: @ Full Domain B255K 245K pq235K




Results: Domain MBE

Bias for May Simulated 10.3 um Brightess Temperature [K]

18 20 22 00 02 04 06 08 10 wgim&m?gy%m:lo 2 00 02 04 06 08 10 12 [ J Positive Bias — Domain BTS tOO high.

* SPP-MP BTs are slightly lower than
Control.

Average Bia.s.[K]

* Difference statistically significant
for January

95% Confidence
Interval for SPP-MP
minus Control MBE
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Bias for January Simulated 10.3 um Brightess Temperature [K]
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Results: Domain MBE
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6 7 & 9 10

Positive Bias = Domain BTs too high.

* SPP-MP BTs are slightly lower than
Control.

* Difference statistically significant
for January
Positive bias due to not enough grid
points with 270 K < BT < 255 K.

* More pixels for SPP-MP compared
to Control

Control has more grid points with BT <
225 K than SPP-MP

 SPP-MP reduces negative MBE at
this BT threshold.




Results: Area of MODE Objects

Area of MODE Objects [grid points]

Area of MODE Objects [grid points]
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* Average area encompassed by SPP-
MP larger than Control for both
months.
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Results: Number of MODE Objects

Number of MODE Objects

Number of MODE Objects
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SPP-MP Objects

Control Objects

Area encompassed by the simulated
objects is much larger than the area of
observed objects.

* Average area encompassed by SPP-
MP larger than Control for both
months.

Slightly more cloud objects in the SPP-
MP ensemble than in the Control
during May.

SPP-MP has fewer objects compared to
the Control in January.

Average object size smaller in SPP-MP
for 44% (14%) of May (January)
forecasts.




Results: Object MAE and MBE

Mean Absolute Error for May 235 K Objects from Simulated 10.3 pm Brightess Temperature [K]
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* More accurate at representing
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significant.
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Results: Object MAE and MBE

Bias for May 235 K Objects from Simulated 10.3 um Brightess Temperature [K]
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MAE for SPP-MP is lower than the
Control for both months.

* More accurate at representing
object BTs

* Occasionally difference is statically
significant.
Bias is lower compared to the full
domain
* Too low for May, Control neutral

e January object BTs still too high, but
SPP-MP are slightly lower.

Bias highly correlated with area ratio.

* Larger forecast objects compared to
observations has lower bias.




Conclusions

Model accuracy (MAE) can be analyzed different ways using the same metric.
e SPP-MP and Control similar MAEs over full domain.

 SPP-MP has lower accuracy in May when only using grid points with a BT lower than a
given threshold in either observations or ensemble member.

* Defining objects with that threshold and removing displacement results in higher
accuracy for the SPP-MP for matched object pairs.

Bias also differs depending on analysis domain.

* Positive over the full domain but negative for matched object pairs (May).
MODE allows for analyzing object number and sizes

e SPP-MP produces more cloud objects in May 2017 compared to the Control

e SPP-MP produces less cloud objects in January 2018, and both ensembles produce
less than the observations.

 Total area encompassed by objects for both ensembles is larger than the observations.
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Model Configurations: FV3-LAM

Name

Control

MP-NSSL

MP-MG

PBL-SH

PBL-EDMF
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LSM-RUC_SFC-MYNN
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Surface Land
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GFS
GFS
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Surface
Model
Noah
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Noah
RUC

RUC

Comparison of Simulated 10.3 um BTs from 20190522 00UTC valid on 20190522 at 1800UTC
Simulated BTs -- Control
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Brightness Temperature [K]
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Methodology

1. Object-based Threat Score (OTS) :

S _
1
OTS= 2 Ip(a?+ag)
Af+AO p—l

A:and A, : Area of all forecasted and observed objec_ts.
P : number of matched forecast and observation object pairs

IP : interest score between the matched forecast and observation object

a?and ag : areas of the forecast and observation objects in the matched

pair




Methodology

Mean Error Distance Example for 235 K MODE Objects

1. Object-based Threat Score (OTS) : e oo ot ot g
_ P - , ; A _ 3
1 0,0,
OTS= ——— IF(ag +ag
Af+AO
p=1

b) Mg

A:and A, : Area of all forecasted and observed objec_ts.
P : number of matched forecast and observation object pairs

IP : interest score between the matched forecast and observation object

a?and ag : areas of the forecast and observation objects in the matched

e Y — N
Distance Map Distance [grid points]

oy

0 50 100 200 250 300 350 400 450 500

p a i r- Magnitude of the Difference between Observation and Control Configuration Distance Maps
c) = —

2. Mean Error Distance (MED):

Calculates distance between every grid point identified as a forecast

(observation) object to the closest grid point identified as an observation

(forecast) object.

e distance map: shortest distance between every grid point and the
nearest grid point identified as an object

« MED from forecast to observation # MED from observation to forecast ST

d) %

125 150




Results: Object-Based Threat Score

Object-based Threat Score for 235K objects
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Object-based Threat Score Difference for 235K objects
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Object-Based Threat Score Difference (Configuration minus Control)

T
-0.2 -0.1 0.0 0.1 0.2

e Control has the highest

average OTS.

MP-MG has the lowest
average OTS.

LSM-RUC_SFC-MYNN has
the steepest decline in
OTS by forecast hour.
* Correlated with an
increased number of
objects

Parameter changes have
a neutral to positive
impact on OTS in early
FHs compared to Control.




Results: Object-Based Threat Score

Average
Interest Score

Percent Observation
Area is Matched

Percent Forecast
Area is Matched
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Similar Percent of
Observation Objects

matched (Z—O)

MP-MG much lower
Percent Forecast Objects

matched (Z—f)
f

* MP-MG has highest
number of objects.

Local maximum in
interest scores due to
lower distance between
matched objects

X5, 1P)




Results: Object-Based Threat Score

Average
Interest Score
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Diurnal Cycle in Average
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Results: Object-Based Threat Score

Comparison of Interest Scores by Forecast Hour

* Diurnal Cycle in Average
Interest Scores
corresponding to 5-9 pm
Central Daylight Time.
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e Break down Interest
Scores into 4 main
components.
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* Diurnal cycle in
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Results: Area of MODE objects

Total Area of MODE Objects [km® x 107
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e Taylor diagram: bottom
image

e Pearson correlation
coefficient (solid
lines)

e standard deviation
(dashed lines)

* root-mean-square
difference along the
dashed semi-circles
in the plot.

* mean squared
error after
accounting for
biases




Results: Area of MODE objects
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* Diurnal cycle like OTS.
* higher OTS does not
correspond to more

overlapping area.

e MP-MG has the largest
amount of area
encompassed by objects

e largest spread in
median area

 Changes to the PBL
results in less correlation
between areas.

e LSM-RUC SFC-GFS has
lowest RMSD.




Results: Mean Error Distance
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MED from forecast to
observation > MED from
observation to forecast
* Due to more forecast
object grid points
than observations.

MP-MG has highest MED
from forecast to
observation.

Diurnal cycle: More grid
points and lower MED
* Not indicate more
overlapping grid
points.




Results: Object-based MAE and MBE

Comparison of 235 K Objects from Simulated 10.3 um Brightess Temperature [K]

| * Diurnal cycle in model accuracy

Kl

£ * Opposite of OTS (MAE high when OTS low)
* Centroid distance removed for MAE.
 MP-MG highest MAE, Control lowest.

cé * MP-MG difference from Control statistically
[[ fﬂlﬁ 1 g ﬁf iﬁ q lm"ﬁﬂﬂ """ 1[ I‘[?'}Wﬁ‘hﬂ' significant.

R LLITTErFT T e T e e e MP-NSSL next highest MAE.
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- MP-NSSL
=== MP-MG —— PBL-EDMF --=-- LSM-RUC_SFC-MYNN




Results: Object-based MAE and MBE

Comparison of 235 K Objects from Simulated 10.3 um Brightess Temperature [K]
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Diurnal cycle in model accuracy
* Opposite of OTS (MAE high when OTS low)
* Centroid distance removed for MAE.

MP-MG highest MAE, Control lowest.

* MP-MG difference from Control statistically
significant.

 MP-NSSL next highest MAE.

Changing microphysics scheme has largest
impact on MBE (and MAE)
* MP-MG low bias in object BTs
 MP-NSSL has a high bias in object BTs.
e MBE is correlated with an increased number
of forecast object grid points compared to
the observation object.




Brightness Temperature Bias
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BT corresponding to the
6.5% percentile:

Observations: 235.0 K
Control : 231.0K
MP-NSSL: 232.3 K
MG-MG: 228.1 K
PBL-SH: 230.9 K
PBL-EDMF: 230.9 K

LSM-RUC_SFC-GFS:
231.1K

LSM-RUC_SFC-MYNN:
229.7 K




_Results: Brightness Temperature Bias

e Overall, little change from
235.0 K threshold.




Results: Brightness Temperature Bias
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Threat Score Difference
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Overall, little change from
235.0 K threshold.

OTS:
* Neutral changes
e MP-MG still lowest.




_Results: Brightness Temperature Bias

e Overall, little change from
Difference in Mean Error Distance for Objects based on 235.0 K threshold.
) the 6.5 percentile and using a threshold of 235 K
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_Results: Brightness Temperature Bias

Comparison of 6.5" percentile Objects from Simulated 10.3 um Brightess Temperature

T T * Overall, little change from
j -\ | 235.0K threshold.

« OTS:
* Neutral changes
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Conclusions

1. Changing the microphysics scheme from Thompson:
e Morrison-Gettelman results in lower BTs, which are overall less accurate.
 NSSL results in higher BTs, which are also less accurate than Control.

2. Changing the PBL scheme from MYNN:
* reduces the high BT bias, though the BTs are less accurate based on the OTS

and MAE.

3. Updates to the surface also reduce the accuracy of simulated BTs.

4. Accounting for model bias when calculating the OTS does not impact the
relative performance of each model configuration.



Future Work
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Future Work

1. Expand beyond the 10.3 um
brightness temperatures.
* Water vapor BTs
 Can we correlate features in
the WV BTs to synoptic
features?

. Comparison of Control Simulated
6.2 um BT, Wind Speed, and 500-hPa Heights valid 20170501 at 22UTC

a) Simulated 6.2 um BTs
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Future Work

1. Expand beyond the 10.3 pum
brightness temperatures.
* Water vapor BTs
 Can we correlate features in
the WV BTs to synoptic
features?

2. Other model fields:
 Radar reflectivity
* Snhow cover



Future Work

1. Expand beyond the 10.3 pum
brightness temperatures.
* Water vapor BTs
 Can we correlate features in :
the WV BTs to synoptic QU e St I O n S ? ?
features?

2. Other model fields: Email:
 Radar reflectivity

- sarah.griffin@ssec.wisc.edu
¢ NOW cover
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